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Gluon polarization in nucleons?
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Abstract. In QCD the gauge-invariant gluon polarization ∆G in a nucleon can be defined either in a
non-local way as the integral over the Ioffe-time distribution of polarized gluons, or in light-cone gauge
as the forward matrix element of the local topological current. We have investigated both possibilities
within the framework of QCD sum rules. Although the topological current is built from local fields, we
have found that its matrix element retains sensitivity to large longitudinal distances. Because QCD sum
rules produce artificial oscillations of the Ioffe-time distribution of polarized glue at moderate and large
light-like distances, the calculation of the matrix element of the topological current results in a small value
of ∆G(µ2 ∼ 1GeV2) ≈ 0.6 ± 0.2. In a more consistent approach QCD sum rules are used to describe the
polarized gluon distribution only at small light-like distances. Assuming that significant contributions to
∆G arise only from longitudinal length scales not larger than the nucleon size leads to ∆G(µ2 ∼ 1GeV2) ≈
2 ± 1.

1 Introduction

Thanks to celebrated factorization theorems [1] hard scat-
tering of highly virtual probes from nucleons can be char-
acterized in QCD by universal, process independent, non-
perturbative distribution functions which contain all rele-
vant information about the long-distance dynamics of the
target. At twist-2 these are identified in the framework
of the QCD-improved parton model with scale-dependent
quark and gluon light-cone distributions. For spin-1/2 tar-
gets they include unpolarized quark and gluon distribu-
tions and their polarized counterparts related to longitudi-
nal and transverse target polarizations. Quantum numbers
and chiral properties of the hard probe determine which
particular set of distribution functions can be accessed in a
specific process. Until now most information about the nu-
cleon structure has been obtained from deep-inelastic lep-
ton scattering experiments. In particular, recent measure-
ments of polarized deep-inelastic scattering at CERN [2]
and SLAC [3] have shown that a relatively small fraction
of the nucleon spin is carried by quarks. This has started
an ongoing debate about remaining contributions to the
nucleon spin [4] which may result from gluon polarization
and orbital angular momentum. Here especially the po-
larized gluon distribution ∆G(u, µ2)1 became of interest
since it turned out to be measurable in future high-energy
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1 Throughout this paper we denote the Bjorken variable xBj

by u to avoid confusion with the space-time variable x

experiments, e.g. charm and direct photon production [5,
6].

At present the only available information about the
magnitude of the total gluon polarization

∆G(µ2) =
∫ 1

0
du ∆G(u, µ2) (1)

results from the analysis of scaling violations in the polar-
ized structure function g1(u, Q2). Here a relatively large
gluon polarization has been found even at a low normal-
ization scale ∆G(µ2 = 1GeV2) = 1.6 ± 0.9 [7]. The main
objective of the present paper is to discuss a framework in
which one may determine ∆G(µ2) using presently known
non-perturbative methods.

The link between parton model ideas and QCD is pro-
vided by the Operator Product Expansion (OPE) [1]. It
allows to relate moments of parton distributions to ma-
trix elements of local operators with appropriate quantum
numbers2. The latter are computable either in some ap-
proximate way using e.g. model descriptions of hadronic
structure [8,9] or QCD sum rules [10], or at least in prin-
ciple, through lattice simulations [11].

An alternative, but completely equivalent picture
views twist-2 parton distribution functions as normalized
Fourier transforms of nucleon matrix elements of non-
local QCD operators [12], constructed as gauge-invariant
overlap of two quark or gluon fields separated by a light-
like distance. Since the first few coefficients of the Tay-
lor expansions of these non-local matrix elements around
the origin are given by matrix elements of local, low-

2 We define the n-th moment of a distribution F (u) as
Γn[F ] =

∫ 1

0
duun−1F (u)
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dimensional twist-2 operators, the domain of small lon-
gitudinal distances is determined by known non-pertur-
bative QCD methods. However for increasing longitudi-
nal distances more and more twist-2 matrix elements are
required and soon one enters a region where lattice QCD
and other non-perturbative approaches are practically not
applicable any more. Phenomenologically, for unpolarized
charge conjugation even quark and gluon distributions one
observes a transition between the region of small and large
longitudinal distances around a length scale which corre-
sponds to the electromagnetic nucleon size of around 2 fm
[13]. Beyond that scale the matrix elements of the cor-
responding string operators become smooth and approxi-
mately flat as functions of longitudinal distance – at least
at low normalization scales. The matrix elements of the
string operators which correspond to C-odd unpolarized
quark distributions decrease and become small at longitu-
dinal distances beyond 2 fm. In both cases, however, the
region of large longitudinal distances is beyond the scope
of presently available non-perturbative methods, and one
has to resort to approximations such as Regge theory. An
ideal non-perturbative QCD observable should therefore
avoid contributions from large longitudinal distances, i.e.
it should be sensitive only to those degrees of freedom
which reveal themselves at length scales which are not
larger than the nucleon size.

Although the total gluon polarization receives most in-
terest from a phenomenological point of view, establishing
a framework for its evaluation has its own importance.
This is due to the fact that there is no local, gauge in-
variant operator which can serve as a “gluon polarization
partonometer”, i.e. which yields a matrix element associ-
ated with ∆G(µ2). In general two different ways to define
∆G(µ2) have been discussed in the literature so far. It has
been known for a long time that the gluon polarization can
be related to the matrix element of a gauge invariant, but
non-local gluonic string operator [14,15]:

ONL = nµnν

∫ ∞

0
dλ Tr Gµξ(λn)[λn; 0]G̃ξ

ν(0). (2)

Here Gµν and G̃µν denote the gluon field strength and its
dual, respectively, and nµ is a light-like vector with n2 = 0,
n · a = a0 + a3 ≡ a+ for any four-vector a. The trace in
(2) is performed in color space and the path-ordered ex-
ponential in the adjoint representation [λn; 0] guarantees
gauge invariance. Note however that so far most experi-
ence has been obtained in dealing with matrix elements of
local operators, and therefore it is not clear a’priori how
one should apply the non-local operator (2) in practice. In
our recent work [16] we have argued that a computation
of ∆G(µ2) using the operator ONL at some low normal-
ization scale is possible, but requires an insight into the
nature of contributions arising from large longitudinal dis-
tances. Once one accepts a point of view, supported e.g.
by Regge theory, that despite its non-local character the
gluon polarization ∆G(µ2) receives only minor contribu-
tions from large longitudinal distances, an approximate
“gluon polarization partonometer” can be constructed in
a gauge-invariant way. In its simplest version it takes into

account information encoded in only two first computable
QCD moments of the polarized gluon distribution func-
tion.

On the other hand in light-cone gauge n · A = A+ = 0
the operator ONL assumes a local form, identical to the
n · K = K+ component of the topological current [14,15]:

Kµ =
αs

2π
εµνρσAν

a

(
∂ρAσ

a +
1
3
gfabcA

ρ
bA

σ
c

)
. (3)

Consequently it is suggestive to use n · K as a gluon po-
larization partonometer due to its local character. Corre-
sponding calculations in the framework of the bag model
have been performed recently in [17]. Nevertheless, as we
shall discuss, although formally the operator n ·K is built
from local fields, its matrix element is sensitive to large
longitudinal distances in the same way as the matrix ele-
ment of the non-local operator in (2). Thus the advantage
of using n ·K instead of ONL is illusory. This is illustrated
below within the framework of QCD sum rules. We find
that our estimates for ∆G(µ2) as obtained from the gluon
polarization partonometer presented in [16], and from the
local operator (3) differ approximately by a factor of four.
This discrepancy emphasizes, as we will show, the role of
contributions from different longitudinal length scales.

The remainder of this paper is organized as follows: in
Sect. 2 we collect the most important facts about the op-
erator definition of the polarized gluon distribution and
the gluon polarization integral. In Sect. 3 we present a
QCD sum rule estimate for ∆G(µ2) starting out from the
matrix element of n · K in light-cone gauge, and review
an estimate for ∆G(µ2) using the gluon partonometer in-
troduced in [16]. We then discuss and explain in Sect. 4
the reasons for the surprising discrepancy between the re-
sults obtained with these two methods. Finally Sect. 5 is
devoted to a summary and conclusions.

2 Polarized gluon distribution in QCD

In QCD parton distributions can be related to matrix ele-
ments of twist-2 non-local operators [12]. In this frame-
work unpolarized and polarized gluon distributions are
defined through matrix elements of the light-cone string
operators:

OG(∆; 0) = nµnνTr Gµξ(∆)[∆; 0]Gξ
ν(0), (4)

O∆G(∆; 0) = nµnνTr Gµξ(∆)[∆; 0]G̃ξ
ν(0). (5)

Here ∆ stands for a light-like vector being proportional to
n. The path-ordered exponential

[∆; 0] = P exp
[
ig∆µ

∫ 1

0
dλAµ(∆λ)

]
, (6)

with the strong coupling constant g and the gluon field
Aµ guarantees gauge invariance of the parton distributions
(7,8). The forward matrix elements of the string operators
(4,5) between nucleon states with momentum p and spin
s define the unpolarized and polarized gluon distribution
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of a nucleon, G(u, µ2) and ∆G(u, µ2), as a function of the
Bjorken variable u and the normalization scale µ2:

1
2

∑
s

〈p, s|OG(∆, 0)|p, s〉µ2

= (p · n)2
∫ 1

0
du u G(u, µ2) cos [u(p · ∆)] , (7)

〈p, s|O∆G(∆, 0)|p, s〉µ2

= (p · n)(s · n)
∫ 1

0
du u ∆G(u, µ2) sin [u(p · ∆)] . (8)

The invariant measure of the light-cone distance between
the two gluon fields in (7,8) is given by the so called Ioffe-
time z = p·∆. Furthermore note that for a target polarized
in the 3-direction one has s · n = p · n. Taking the Fourier
transform of (7,8) yields the distribution functions:

u G(u, µ2) =
1

π (p · n)2

×
∫ ∞

0
dz

∑
s

〈p, s|OG(∆, 0)|p, s〉µ2 cos(uz), (9)

u ∆G(u, µ2) =
2

π (p · n)(s · n)

×
∫ ∞

0
dz 〈p, s|O∆G(∆, 0)|p, s〉µ2 sin(uz). (10)

These definitions are of course in agreement with the
perceptions of the parton model. Indeed in light-cone
gauge, n · A = 0, one can express the distributions (9,10)
in terms of right- and left-handed gluon operators de-
fined as G+R(L) = ε

R(L)
µ G+µ, with the polarization vectors

εµ
R = (0,−1,−i, 0)/

√
2 and εµ

L = (0, 1,−i, 0)/
√

2:

u G(u, µ2) =
1

π p · n

∫ ∞

0
dλ cos (p · n λu)

×
∑

s

Tr〈p, s| (G+R(nλ)
)†

G+R(0)

+
(
G+L(nλ)

)†
G+L(0)|p, s〉µ2 ,

(11)

u ∆G(u, µ2) =
2i

π s · n

∫ ∞

0
dλ sin (p · n λu)

×Tr〈p, s| (G+R(nλ)
)†

G+R(0)

− (
G+L(nλ)

)†
G+L(0)|p, s〉µ2 .

(12)

After rewriting the gluon field strength tensor in terms of
light-cone quantized fields one obtains:

u G(u, µ2) =
∫

dx d2k⊥δ(u − x)x

× [
ng(x,k⊥, R, µ2) + ng(x,k⊥, L, µ2)

]
, (13)

u ∆G(u, µ2) =
∫

dx d2k⊥δ(u − x)x

× [
ng(x,k⊥, R, µ2) − ng(x,k⊥, L, µ2)

]
, (14)

where ng(x,k⊥, R(L), µ2) denotes the light-cone distribu-
tion function of right- (left-) handed gluons with light-cone
momentum fraction x and transverse momentum k⊥ [14].

In the following we focus on the polarized gluon dis-
tribution. Performing a Taylor expansion of (8) around
∆ = 0 leads to well-known relations, or sum rules, between
the moments of the polarized gluon distribution ∆G(u, µ2)
and nucleon matrix elements of local QCD operators [18]:

∫ 1

0
du ul−1 ∆G(u, µ2) ≡ Γl(µ2), with l = 3, 5, . . . ,

nµnνTr 〈p, s|Gµξ(0)(in · D)l−2G̃ξ
ν(0)|p, s〉

= (s · n)(p · n)l Γl(µ2). (15)

Note, however, that a sum rule for l = 1 which corresponds
to the integrated gluon polarization ∆G(µ2) is lacking.
This is due to the fact that a suitable gauge invariant,
charge conjugation even, local operator which may serve
as a gluon polarization partonometer does not exist.

On the other hand we find from (8) that the polar-
ized gluon distribution ∆G(µ2) is determined by an inte-
gral over the corresponding Ioffe-time distribution which
is defined as:

Γ (z, µ2) =
∫ 1

0
du u∆G(u, µ2) sin(uz). (16)

Since in the distribution sense one has:
∫ ∞

0
dz sin(uz) =

1
2

(
1

u + iε
+

1
u − iε

)
= PV

1
u

, (17)

where PV denotes the principal value prescription, we in-
deed obtain:

∆G(µ2) =
∫ ∞

0
dz Γ (z, µ2) . (18)

It is important to realize that Γ (z, µ2) ∼ zα−2 for large
z, if ∆G(u, µ2) ∼ u−α at small u. Therefore as long as
α < 1 the integral over the polarized gluon distribution
(18) exists as it converges at large z in an absolute sense.
(At small z the integrand in (18) should not cause harm
since there Γ (z) ≈ z Γ3, with an anticipated finite third
moment Γ3.) Expanding the RHS of (16) around z = 0
yields a Taylor expansion of the Ioffe distribution Γ (z, µ2)
with coefficients proportional to the odd moments Γl(µ2):

Γ (z, µ2) = Γ3(µ2) z − 1
6
Γ5(µ2) z3

+
1

120
Γ7(µ2) z5 − . . . (19)

Since each of these moments can be calculated, at least
formally, as a reduced matrix element of a local, gauge
invariant operator, the convergent integral (18) and hence
∆G(µ2) itself is a gauge-invariant quantity.

As already mentioned in the introduction, in light-cone
gauge the gluon polarization ∆G(µ2) can also be related
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to the expectation value of the topological current (3):

〈p, s|n · K(0)|p, s〉µ2 = (s · n)
αs

π

∫ ∞

0
dz Γ (z, µ2)

= (s · n)
αs

π
∆G(µ2). (20)

Indeed, in light-cone gauge the operator O∆G(∆; 0) in (5)
reduces to:

2O∆G(∆; 0) = ∂+A2(∆)∂+A1(0)
−∂+A1(∆)∂+A2(0) , (21)

where A1 and A2 denote the transverse components of
the gluon field. This simplification occurs because in this
gauge the path-ordered exponential [∆; 0] = 1, and the
components of the gluon field strength tensor which enter
O∆G(∆; 0) are given by G+⊥ = ∂+A⊥. Using the defini-
tion (18) we obtain:

∆G(µ2) =
1

2(s · n)(p · n)

∫ ∞

0
dz 〈p, s|∂+A2(∆)∂+A1(0)

−∂+A1(∆)∂+A2(0)|p, s〉µ2 ,

=
1

2(s · n)

∫ ∞

0
dλ 〈p, s| ∂

∂λ
A2(λn)∂+A1(0)

− ∂

∂λ
A1(λn)∂+A2(0)|p, s〉µ2 . (22)

Assuming that the boundary term vanishes for λ → ∞,
one finally obtains:

2(s · n)∆G(µ2) = 〈p, s|A1(0)∂+A2(0)
−A2(0)∂+A1(0)|p, s〉, (23)

which is easily shown to be equivalent to (20). This rela-
tion involves an operator which is built from local fields.
Therefore its matrix element is calculable using known
methods to deal with local operators. This fact however
turns out to be of no real advantage as we will point out
in Sect. 4, where we describe a QCD sum rule calculation.

To complete our discussion we derive the scale depen-
dence of the gluon polarization ∆G(µ2) starting out from
the operator definition (18). The one-loop evolution equa-
tion for the Ioffe-time distribution Γ (z, µ2) reads [19,20]:

µ2 dΓ (z, µ2)
dµ2 =

αs(µ2)
2π

∫ 1

0
dv[K1(v)Γ (vz, µ2)

+K2(v)
1
z
Σ(vz, µ2)], (24)

where:

K1(v) =
β0

2
δ(v̄) + 2CA

(
2vv̄ +

1
v̄+

− 1 − v

)
,

K2(v) = −CF (δ(v̄) − 2v̄) , (25)

with CF = 4/3, CA = 3, β0 = 11 − 2
3Nf , with Nf being

the number of active flavors, and v̄ = 1−v. The factor 1/z

in (24) arises in accordance with the definition of Σ(z, µ2),
the Ioffe-time distribution of polarized quarks:

〈p, s|Ψ̄(∆)n̂γ5[∆; 0]Ψ(0)|p, s〉 + (∆ → −∆)
= 4(s · n)Σ(z, µ2),

with Σ(z, µ2) =
∫ 1

0
du ∆q(u, µ2) cos(uz) . (26)

Here ∆q(u, µ2) is the flavor-singlet polarized quark dis-
tribution in momentum space. The evolution equation for
∆G(µ2) is obtained by integrating both sides of (24) over
z. We find that gluons enter only via the term in K1 being
proportional to β0. Furthermore the quark contribution
can be transformed conveniently using the identity:

1
z

∫ 1

0
dv (δ(v̄) − 2v̄) cos (uvz)

= −2u

∫ 1

0
dvv

(
1 − 1

2
v

)
sin (uvz). (27)

Applying (17) yields then the standard one-loop evolution
equation [18]:

d∆G(µ2)
dt

=
αs

2π

(
β0

2
∆G(µ2) +

3
2
CF Σ(µ2)

)
, (28)

with t = log(µ2), and αs =
4π

β0t
.

Here

Σ(µ2) =
∫ 1

0
du ∆q(u, µ2) (29)

is the quark polarization in the proton3. At the one loop
level one has [18]:

dΣ(µ2)
dt

= 0, and thus Σ(µ2) = Σ0 = constant, (30)

i.e. to this accuracy the quark polarization is scale-
independent. One then obtains as a solution of (28) the
well known result [18,21]:

∆G(µ′2) =
αs(µ2)
αs(µ′2)

∆G(µ2)

+
4
β0

Σ0

(
αs(µ2)
αs(µ′2) − 1

)
. (31)

Thus we have shown that the operator definition of
∆G(µ2) is indeed equivalent to parton model consider-
ations.

3 Different gluon polarization partonometers

As discussed above, the gluon polarization in the nucleon
can be obtained either from the integral over the Ioffe-time
distribution (18), or in light-cone gauge from the forward
matrix element of the topological current (20). Here we
explore and compare both approaches in the framework
of QCD sum rules.

3 For considerations of the one-loop evolution equation for
∆G(µ2) it is not necessary to discuss the role of the axial
anomaly in the interpretation of Σ(µ2)
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3.1 Gluon polarization from the topological current

To estimate the nucleon matrix element of the topolog-
ical current (20) we perform a standard QCD sum rule
calculation. For this purpose we consider the three-point
correlation function

IK = i2
∫

d4x eip·x
∫

d4y eiq·y

〈0|T [ηG(x) n · K(y) η̄G(0)]|0〉 (32)

of the operator n · K in light-cone gauge and the nucleon
interpolating currents ηG, η̄G. For the latter we take:

ηG(x) =
2
3
(ηold(x) − ηex(x)), (33)

ηold(x) = εabc(uaT (x)Cγµub(x))γ5γ
µσαβ

[
gGαβ(x)d(x)

]c
,

ηex(x) = εabc(uaT (x)Cγµdb(x))γ5γ
µσαβ

[
gGαβ(x)u(x)

]c
.

Its overlap with the nucleon state,

〈0|ηG(0)|p, s〉 = m2
NλGu(p, s) , (34)

at the scale µ2 ∼ 1 GeV2 has been determined in [22]. Note
that this current, which contains explicit gluon degrees of
freedom, has been successfully employed in investigations
of nucleon matrix elements of QCD operators being sen-
sitive to gluon components of the nucleon wave function
[22–24]. To avoid large t-channel contributions we stay at
Euclidean momenta Q2 = −q2 ≈ (1 − 4) GeV2 and per-
form a numerical extrapolation to Q2 = 0 at the end.
Furthermore the kinematic is chosen such that q · n = 0,
i.e. q2 = −q⊥ 2.

In the following we concentrate on the contribution to
the correlator (32) of the form:4

γ5 p̂ (p · n)TK(p2, (p + q)2, Q2) . (35)

The invariant function TK can be projected out uniquely
from IK . It receives contributions from nucleons as well
as from higher resonances and continuum states. For the
nucleon contribution we have:

TK(p2, (p + q)2, Q2) =
Tr (n̂γ5IK)
4(p · n)2

=
λ2

G m4
N

(m2
N − p2)(m2

N − (p + q)2)
αs

π
∆G̃(Q2), (36)

where the form factor ∆G̃(Q2) coincides at Q2 = 0 with
the gluon polarization ∆G.

As a next step we use the fact that TK admits a double
spectral representation [25]:

TK(p2, (p + q)2, Q2) =
∫

ds1

s1 − p2

∫
ds2

s2 − (p + q)2

×ρK(s1, s2, Q
2). (37)

4 We suppress here and in the following any dependence on
the scale µ2

��

��

���� �� ��

����������
��
��
��

��
��
��
��

Fig. 1. Graphs representing the contributions from dimension-
1 and dimension-6 operators to the QCD sum rule calculations
described in the text

We have calculated the spectral density ρK in light-
cone gauge, taking into account the dimension-1 and
dimension-6 operators in the OPE of TK , which are vi-
sualized in Fig. 1. We obtain:

ρ
(1)
K (s1, s2, Q

2) =
α2

s Q2
(
∆q − R

1
2

)2

23040 π6 R
5
2

×
(
∆q Q2 R

3
2 − 3 ∆q R2 − Q2 R2

−7 R
5
2 − 2 ∆q Q2 R

1
2 s1 s2 + 2 ∆q R s1 s2

+4R
3
2 s1 s2 − 4 Q2 s2

1 s2
2

)
,

ρ
(6)
K (s1, s2, Q

2) =
56 α2

s

9 π2 〈q̄q〉2 ∆q Q4 s1 s2

R
5
2

, (38)

where ∆q = s1+s2+Q2 and R = ∆2
q −4s1s2. To eliminate

contributions from higher resonances and the continuum
we limit the integral over s1 and s2 by the continuum
threshold s0. Performing in addition a Borel transforma-
tion in p2 and (p + q)2 yields the sum rule:

αs

π
∆G̃(Q2) =

em2
N /M2

λ2
Gm4

N

∫ s0

0
ds1

∫ s0

0
ds2 e−(s1+s2)/2M2

×ρK(s1, s2, Q
2) , (39)

where M2 is the Borel parameter. For consistency both, s0
and M2 should be taken around their values fixed by the
two-point sum rules [22]. In the actual calculation we use
at the scale µ2 = 1 GeV2 the standard value for the quark
condensate, −(2π)2〈q̄q〉 = 0.67 GeV3, and the strong cou-
pling αs = 0.37 [22].

The stability of the sum rule (39) against variations of
the Borel parameter M2 and the continuum threshold s0
is illustrated in Figs. 2 and 3. One observes a relatively
strong dependence on s0 which can be traced back to the
large dimension of the interpolating current ηG. To deter-
mine the gluon polarization ∆G we extrapolate the form
factor ∆G̃(Q2) to Q2 → 0. For this purpose we fit the
RHS of (39) in the interval 1 GeV2 ≤ Q2 < 4 GeV2 by:

∆G̃(Q2) = ∆G
1

[1 + Q2/m2]γ
, (40)

with γ = 3 as suggested by quark counting rules. Extrap-
olating to Q2 → 0 gives ∆G(µ2 ∼ 1 GeV2) = 0.6 ± 0.2,
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Fig. 2. Stability of the sum rule for the nucleon matrix element
of n · K against variations of the Borel mass between M2 =
1GeV2 (lower curve) and M2 = 2GeV2 (upper curve). The
continuum threshold has been fixed at

√
s0 = 1.5GeV. The

dots correspond to the sum rule results (39) for 1GeV2 ≤ Q2 <
4GeV2. The solid lines show the extrapolation to Q2 → 0 (40)
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∆G
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Fig. 3. Stability of the sum rule for the nucleon matrix ele-
ment of n · K against variations of the continuum threshold
between

√
s0 = 1.4GeV (lower curve) and

√
s0 = 1.6GeV

(upper curve). The Borel mass has been fixed at M2 = 1.5
GeV2. The dots correspond to the sum rule results (39) for
1GeV2 ≤ Q2 < 4GeV2. The solid lines show the extrapola-
tion to Q2 → 0 (40)

where the error has been estimated from the M2 and s0
dependence of the extrapolation. We have checked that
this result essentially does not change if we allow γ as a
fit parameter as well. An additional 30% error arises from
the uncertainty in λG and the vacuum saturation ansatz
for the four-quark condensate [22].
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Fig. 4. The Ioffe-time distributions corresponding to the polar-
ized gluon distributions of Chiappetta et al. [29] (upper curve)
and and Brodsky et al. [27] (lower curve)

3.2 Gluon polarization from an approximate Ioffe-time
distribution

In comparison to the above calculation we review here an
estimate of ∆G via an approximate Ioffe-time distribu-
tion [16]. The latter is based on the conjecture that in
the laboratory frame the polarized gluon distribution (18)
receives major contributions only from longitudinal dis-
tances smaller than the nucleon diameter, as determined
by the nucleon electromagnetic form factor. This hypoth-
esis is supported both by Regge phenomenology [26] and
the color coherence hypothesis [27], which impose strong
restrictions on polarized glue at small u or, equivalently,
at large z. For a more accurate determination of the longi-
tudinal length scale at which the gluon polarization (18)
effectively saturates an additional assumption has to be
made. In this respect we have constructed in [16] a po-
larized gluon correlation function Γ (z) which behaves at
large z similar to the valence quark distribution of a nu-
cleon, i.e. it becomes small for z >∼ 10. (In the nucleon
rest frame z = 10 corresponds to a longitudinal distance
of 2 fm.) Indeed most of the current parametrizations for
polarized glue sustain this picture [28], as shown in Fig. 4
for the distributions from [27,29].

In Fig. 5 we present the Ioffe-time distribution as ob-
tained from the expansion in (19), taking into account
terms up to the n-th moment of ∆G(u). One finds that
the first two non-vanishing moments Γ3 and Γ5 determine
the Ioffe-time distribution Γ (z) at small z nearly up to its
maximum5. Therefore if the polarized gluon distribution
is of regular shape similar to the ones shown in Fig. 4,
and obtains significant contributions only from the region
z <∼ 10, a simple estimate of ∆G(µ2) is possible [16]. It
is given by the area of the triangle spanned by the points
z = 0, z = 10, and the maximum of the approximate

5 Note that in the notation of [16] Γ3 and Γ5 correspond to
Γ2 and Γ4, respectively
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Fig. 5. The Ioffe-time distribution of polarized glue, approxi-
mated by its n-th order Taylor expansion around z = 0 (19),
using the parameterization of [29]

Ioffe-time distribution

Γ (z) ≈ Γ3 z − 1
6

Γ5 z3. (41)

This rough estimate requires only the knowledge of two
moments of ∆G(u). These can, as a matter of principle,
be taken from any theoretical investigation, i.e. QCD sum
rules or lattice calculations.

Of course one can do better if the normalization of
Γ (z) is known at some large value of z ≈ 10. Then a more
accurate estimate can be achieved, calculating the area
bound by the approximate Ioffe-time distribution (41) up
to its maximum and a straight line connecting this point
with the value of Γ (z = 10). For the model parametriza-
tions [27,29] this leads to an estimate for ∆G with (10 −
20)% accuracy. In [16] the color coherence hypothesis [27]
has been applied to obtain information on the large z or,
equivalently, small u behavior of polarized glue in nucle-
ons:

∆G(u)
G(u)

→ u, for u → 0. (42)

It allows to estimate Γ (z = 10) from parametrizations for
the unpolarized gluon distribution. For example one finds
from the GRV [30] and CTEQ [31] LO unpolarized gluon
distributions Γ (z = 10, µ2 ∼ 1 GeV2) = 0.005− 0.007. On
the other hand the parametrizations of [27] and [29] yield
Γ (z = 10, µ2 ∼ 1 GeV2) = 0.02 and 0.09, respectively.
Since in principle nothing prevents Γ (z) from becoming
negative at large z, −0.05 ≤ Γ (z = 10) ≤ 0.05 should be
a conservative estimate.

The moments Γ3 and Γ5 have been calculated within
a standard QCD sum rule approach, starting from an in-
vestigation of the three-point correlation function [16]:

IΓ = i2
∫

d4x eiq·x
∫

d4y eip·y

×〈0|T [ηG(x)O∆G(y + ∆/2; y − ∆/2)η̄G(0)]|0〉,
= γ5 p̂ (p · n)2 TΓ (p2, (p + q)2, Q2, z) + . . . . (43)

Separating the contribution from nucleon states yields:

TΓ (p2, (p + q)2, Q2, z) =
Tr (n̂γ5IΓ )
4(p · n)3

=
λ2

G m4
N

(m2
N − p2)(m2

N − (p + q)2)
Γ̃ (z, Q2) + . . . , (44)

where the form factor Γ̃ (z, Q2) coincides at Q2 = 0 with
the Ioffe-time distribution Γ (z) in (16). In a next step
again a double spectral representation is introduced:

TΓ (p2, (p + q)2, Q2, z) =
∫

ds1

s1 − p2

∫
ds2

s2 − (p + q)2

×ρΓ (s1, s2, Q
2, z). (45)

As in Sect. 3.1 the dimension-1 and dimension-6 contribu-
tions have been considered. For them the polarized spec-
tral density ρΓ coincides with the spectral density for the
operator (4) which determines the unpolarized gluon dis-
tribution G(u, µ2) [22]. Since this spectral density leads
to a realistic large value for the contribution of gluons
to the nucleon momentum, it is suggestive that also the
integrated gluon polarization is large.

Expanding (44,45) in powers of z yields sum rules for
Γ3(Q2) and Γ5(Q2), which are given explicitly in [16]. An
extrapolation to Q2 = 0 as in (40) finally leads to the de-
sired moments. In combination with the color coherence
hypothesis (42) one then obtains ∆G(µ2 ∼ 1 GeV2) =
2 ± 1. The main source of the quoted error is due to un-
certainties in the QCD sum rule approach. Furthermore,
under the assumption that Γ (z) follows the Regge behav-
ior at large z, possible contributions from longitudinal dis-
tances beyond the ones accounted for have been estimated
to be smaller than ±0.2. Note however that current expe-
rience [32,33] indicates that QCD sum rules significantly
overestimate higher moments of parton distribution func-
tions. Therefore the result quoted above should be treated
as an upper limit for ∆G(µ2 ∼ 1 GeV2).

4 Discussion

We have found that the gluon polarization obtained from
the matrix element of the topological current differs by a
factor of around four as compared to the estimate based
on the approximate Ioffe-time distribution. This obviously
calls for an explanation. As we show below, this discrep-
ancy emphasizes the role played by contributions from dif-
ferent longitudinal distances.

First let us comment on the question whether we have
gained anything by going from the non-local definition of
∆G to the local one. To this end note that due to (20) one
has:6

ρK(s1, s2, Q
2) =

∫ ∞

0
dz ρΓ (s1, s2, Q

2, z) . (46)

6 We remind the reader that this relation holds only if the
gauge-dependent density ρK is calculated in light-cone gauge
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Fig. 6. The Ioffe-time distribution Γ (z) of polarized glue from
QCD sum rules for the leading dimension-6 contribution, taken
in the limit Q2 → 0

Of course this relation can be directly verified for the con-
tributions from the operators of dimension one and six as
used in Sect. 3.1 and 3.2. This however implies that, in ac-
cordance with the equivalence of the definitions (18) and
(20), the matrix element of n ·K is as sensitive to different
longitudinal distances as the matrix element of the non-
local operator (5). Consequently the apparent local form
of K does not remove the essential non-local character of
∆G.

To clarify the reason for our different results for ∆G
consider a polarized gluon distribution with the following
behavior:

G(u) ∼



A u−α, for u → 0,

B (1 − u)β , for u → 1 .
(47)

The asymptotic form of the corresponding Ioffe-time dis-
tribution at large z arising from the regions u → 0 and
u → 1 reads:

Γ (z) = A sin
(π

2
α
)
ΓE(2 − α)zα−2 + . . .

−B cos
(
z − β

π

2

)
ΓE(β + 1)z−1−β

+ . . . , (48)

where ΓE denotes the Euler Gamma function. Phenomeno-
logically one would expect 0 < α < 1 and β ≥ 4 [27], which
guarantees a smooth non-oscillatory behavior of Γ (z) at
large distances. (In (48) even for α ∼ 0 the next-to-leading
contribution from the small u region dominates over the
leading one arising from the region u → 1, if only β is
large enough and A and B are of similar magnitude.)

The Ioffe-time distribution obtained from QCD sum
rules behaves however differently. This can be seen from
Fig. 6 where we show its dominant contribution which
results from the dimension-6 operator taken in the limit
Q2 → 0. This limit should give a qualitatively reason-
able estimate since the Q2-dependence of the sum rules

in Sect. 3.1 and 3.2 has turned out to be quite smooth.
We find that, contrary to what one expects from phe-
nomenological considerations, Γ (z) oscillates strongly and
decreases relatively slow at large z. In terms of the char-
acteristic exponents in (48) its behavior corresponds ap-
proximately to α ∼ −1 and β ∼ 0. This shows that QCD
sum rules yield a distribution skewed towards large values
of u, and consequently leads to predictions for the mo-
ments of ∆G(u) which are too large. The small value of
β reflects a large weight for configurations in which one
gluon carries most of the momentum of the nucleon. In
the present calculation this is due to the fact that neither
a perturbative (Sudakov), nor a non-perturbative (large
invariant mass) suppression mechanism for such configu-
rations is present in lowest order OPE. Since the sum rule
for n · K in Sect. 3.1 accounts for the full integral over
Γ (z) from zero to infinity, it incorporates all oscillations
at intermediate and large z, leading to a small value of
∆G. Apart from the small-z region the z-dependence of
Γ (z) shown in Fig. 6 is certainly not realistic. Therefore
we have to conclude that the QCD sum rule calculation of
the matrix element of n · K is not entirely self-consistent,
as it receives large contributions from regions where the
sum rule method is not reliable.

This is different in the approach discussed in Sect. 3.2.
Here we have assumed that QCD sum rules yield a rea-
sonable estimate for the first two moments Γ3 and Γ5.
However we have discarded oscillations of Γ (z) at large z,
assuming that the main contribution to ∆G arises from
small light-cone distances. As a consequence QCD sum
rules are used only in a domain where they are in princi-
ple applicable. We therefore believe that such an estimate
of ∆G is better justified.

5 Summary and conclusions

In QCD the twist-2 polarized gluon distribution is de-
fined through a gauge invariant but non-local string oper-
ator. As a consequence ∆G can receive, at least in prin-
ciple, contributions from different longitudinal distances.
Although in light-cone gauge ∆G can be formally ex-
pressed through the forward matrix element of the local
topological current, also in this case contributions from all
longitudinal distances are accumulated. Therefore the lat-
ter can be used for a trustworthy estimate of ∆G only if an
approximation to strong interaction dynamics is available
which is applicable at all longitudinal distances. We have
illustrated this point in the framework of a QCD sum rule
calculation which leads to rather unrealistic contributions
from large longitudinal distances, and results in a small
value for ∆G(µ2 ∼ 1 GeV2) = 0.6 ± 0.2.

For a self consistent estimate of the gluon polariza-
tion in nucleons one has to ensure that the main sup-
port to ∆G results from distances where the used approx-
imation is supposed to do its best. In the case of QCD
sum rules only contributions from small distances can be
approximated in a reasonable way. Combining the latter
with the assumption that contributions to ∆G from dis-
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tances larger than the typical nucleon size are small yields
∆G(µ2 ∼ 1 GeV2) = 2 ± 1.

If, contrary to our assumption, ∆G receives at low nor-
malization scales µ2 important contributions from large
longitudinal distances, new interesting questions would
arise since such contributions could hardly be interpreted
as being due to confining glue, understood as part of a
nucleon with a size of around one fm. At large normal-
ization scales GLAP evolution may result in a more and
more singular behavior of ∆G(u, µ2) at small values of u.
In this case it is understood, however, that such contribu-
tions have to be filtered out in order to learn something
about the distribution of nucleon polarization among low-
virtuality degrees of freedom.

To avoid in the calculation of moments of a parton dis-
tribution a situation in which an approximation tailored
for contributions from small longitudinal distances gener-
ates large contributions from distances beyond its scope of
applicability, one should require that it gives a reasonable
behavior of the considered distribution at large values of
z or, equivalently, at values of u close to 07. If such a re-
quirement cannot be fulfilled an explicit construction of
contributions from large longitudinal distances , like in
[16], is necessary.
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